Resource: large-scale data exploration, MIC-style

Real-world data are messy. Relationships between two variables can take on an infinite number of forms, and while one doesn’t see, say, umbrella-shaped data very often, strange things can happen. When scientists talk about correlations or associations between variables, they’re usually referring to one very specific form of relationship–namely, a linear one. The assumption is that most associations between pairs of variables are reasonably well captured by positing that one variable increases in proportion to the other, with some added noise. In reality, of course, many associations aren’t linear, or even approximately so. For instance, many associations are cyclical (e.g., hours at work versus day of week), or curvilinear (e.g., heart attacks become precipitously more frequent past middle age), and so on.

Detecting a non-linear association is potentially just as easy as detecting a linear relationship if we know the form of that association up front. But there, of course, lies the rub: we generally don’t have strong intuitions about how most variables are likely to be non-linearly related. A more typical situation in many ‘big data’ scientific disciplines is that we have a giant dataset full of thousands or millions of observations and hundreds or thousands of variables, and we want to determine which of the many associations between different variables are potentially important–without knowing anything about their potential shape. The problem, then, is that traditional measures of association don’t work very well; they’re only likely to detect associations to the extent that those associations approximate a linear fit…